
Experimental investigation of electric field distributions in a chaotic three-dimensional
microwave rough billiard

Oleg Tymoshchuk, Nazar Savytskyy, Oleh Hul, Szymon Bauch, and Leszek Sirko
Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warszawa, Poland

�Received 30 August 2006; revised manuscript received 29 January 2007; published 26 March 2007�

We present an experimental study of the electric field distributions EN of a three-dimensional �3D� micro-
wave chaotic rough billiard with the translational symmetry. The translational symmetry means that the cross
section of the billiard is invariant under translation along the z direction. The 3D electric field distributions
were measured up to the level number N=489. In this way the experimental spatial correlation functions
CN,p�x ,s���EN,p�x+ 1

2s�EN,p
* �x− 1

2s�� were found and compared with the theoretical ones. The experimental
results for higher two-dimensional level number N� appeared to be in good agreement with the theoretical
predictions.
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In this paper we present experimental investigation of
electric field distributions of the chaotic three-dimensional
�3D� microwave rough billiard with the translational symme-
try. Due to experimental difficulties there are very few ex-
perimental studies devoted to 3D chaotic microwave cavities
�1–5�. In a pioneering experiment Deus et al. �1� have been
measured eigenfrequencies of the 3D chaotic �irregular� mi-
crowave cavity in order to confirm that their distribution dis-
plays behavior characteristic for classically chaotic quantum
systems, viz., the Wigner distribution. Three-dimensional
chaotic cavities as well as properties of random electromag-
netic vector field have been also scarcely studied theoreti-
cally �6–8�.

In general, there is no analogy between quantum billiards
and electromagnetic cavities in three dimensions. However,
for 3D cavities with the translational symmetry the classifi-
cation of the modes into transverse electric �TE� and trans-
verse magnetic �TM� modes is possible. The TM modes are
especially important because they allow for the simulation of
2D quantum billiards on cross-sectional planes of 3D cavi-
ties. Furthermore, we show in this paper that the distributions
of the electric field of TM modes of the 3D chaotic rough
cavity can be experimentally measured.

In the experiment we used 3D cavity with the transla-
tional symmetry in the shape of a rough half circle �Fig. 1�
with the height h=60 mm. The cavity was made of polished
aluminum.

We suppose that the direction of the translational symme-
try of the cavity is along the z axis. The boundary conditions
at z=0 and z=h demand that the z dependence of the z com-
ponent of the electric and magnetic fields EN,p�x� and BN,p�x�
of TM modes be in the form EN,p�x��EN,p�x ,y ,z�
=AN,p�N,p�x ,y�fp�z�, where fp�z�=cos�p�z /h�, p
=0,1 ,2 . . . ,AN,p is the normalization constant and BN,p�x�
=0. The functional dependence of EN,p�x� on the plane cross-
section coordinates is denoted by the amplitude �N,p�x ,y�
�EN,p�x ,y�. The amplitude �N,p�x ,y� satisfies the Helmholtz
equation

��� + kN,p
2 ��N,p�x,y� = 0, �1�

where �� is two-dimensional Laplacian operator and kN,p
= �kN

2 − �p� /h�2�1/2 is the effective wave vector. The wave

vector kN=2��N /c, where �N is the resonance frequency of
the level N and c is the speed of light in the vacuum. Equa-
tion �1� is equivalent to the Schrödinger equation �in units
�=1� describing a particle of mass m=1/2 with the kinetic
energy kN

2 in an external potential V= �p� /h�2 �9�. Therefore
microwave 3D cavities with the translational symmetry
simulate on the cross-sectional planes quantum billiards with
the external potential �p� /h�2. In this way microwave cavi-
ties can be effectively used beyond the standard 2D fre-
quency limit �the case p=0� �10� in simulation of quantum
systems. The amplitude �N,p�x ,y� fulfills Dirichlet boundary
conditions on the sidewalls of the billiard. Therefore
throughout the text the amplitudes �N�x ,y� are also often
called the wave functions �N�x ,y�. It is important to note that
the full electric field EN,p�x� satisfies additionally Neumann

FIG. 1. Upper panel: Sketch of the chaotic half circular 3D
microwave rough billiard in the xy plane. Dimensions are given in
cm. The cavity sidewalls are marked by 1 and 2 �see text�. Squared
wave functions ��N,p�Rc ,���2 were evaluated on a half circle of
fixed radius Rc=9.25 cm. Billiard’s rough boundary � is marked
with the bold line. Lower panel: White circle marks the position of
the hole drilled in the upper wall of the cavity. This hole was used
to introduce the perturber inside the cavity in order to measure the
z component of the electric field distributions EN,p�x�.
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boundary conditions at the top and the bottom of the cavity.
Because of the relatively low quality factor of the cavity

�Q	4000� the value of the level number N was evaluated
from the Balian–Bloch formula �11�

N�k� =
1

3�2Vk3 −
2

3�2

S

d�	

R	

k , �2�

where k is the wave vector, V= �9.43±0.01�
10−4 m3 is the

volume of the cavity, and �S
d�	

R	
=0.932 m±0.005 m is the

surface curvature averaged over the surface of the cavity.
The measurements allowed us to evaluate the spatial cor-

relation function �12�

CN,p�x,s� =
1

��EN,p�x��2�
�EN,p�x + 1

2s�EN,p
* �x − 1

2s�� , �3�

where the local average �¯� is defined as follows:

��EN,p�x��2� =
1

�n

−�/2

�/2

�EN,p�x + s��2dns . �4�

The 3D cavity sidewalls are made of 2 segments �see Fig.
1�. The rough segment 1 is described on the cross-sectional
planes by the radius function R���=R0+�m=2

M am sin�m�
+�m�, where the mean radius R0=10.0 cm, M =20, am and
�m are uniformly distributed on �0.084,0.091� cm and
�0,2��, respectively, and 0
���. �Here, for convenience,
the polar coordinates r and � are used instead of the Carte-
sian ones x and y.�

The surface roughness of a billiard on the cross-sectional
planes is characterized by the function k���= �dR /d�� /R0.

For our billiard we have the angle average k̃= ��k2������1/2

	0.400. In such a billiard the classical dynamics is diffusive
in orbital momentum due to collisions with the rough bound-

ary because k̃ is much above the chaos border kc=M−5/2

=0.000 56 �14�. The roughness parameter k̃ determines also
other properties of the billiard �15� on the cross-sectional
planes. The amplitudes �N,p�r ,�� are localized for the two-

dimensional level number N��Ne=1/128k̃4, where N�

= A
4�kN,p

2 − P
4�kN,p. A= �1.572±0.002�
10−2 m2 and P

=0.537 m±0.001 m are the cross-sectional plane area and its
perimeter, respectively. Because of a large value of the

roughness parameter k̃ the localization border lies very low,

Ne	1. The border of Breit-Wigner regime is NW=M2 /48k̃2

	52. It means that between Ne�N��NW Wigner ergodicity
�15� ought to be observed and for N��NW Shnirelman er-
godicity should emerge.

To measure the amplitudes �N,p�r ,�� of the 3D electric
field distributions we used a very effective method described
in �16�. It is based on the perturbation technique �17� and
preparation of the “trial functions” �18–20�. In the perturba-
tion method a small perturber is introduced inside the cavity
to alter its resonant frequencies and in this way to evaluate
the squared wave functions ��N,p�Rc ,���2 �see Fig. 1�. The
perturber �4.0 mm in length and 0.3 mm in diameter, ori-
ented in the z direction� was moved by the stepper motor via
the Kevlar line hidden in the groove �0.4 mm wide, 1.0 mm

deep� made in the cavity’s bottom wall along the half circle
Rc. The measurements were performed at 0.36-mm steps
along a half circle with fixed radius Rc=9.25 cm.

In order to find the dependence of the electric field distri-
butions EN,p�x� on the z coordinate and to estimate the wave
vector k3= p� /h we measured the electric field inside the 3D
cavity along the z axis. Also in this case the perturber
�4.5 mm in length and 0.3 mm in diameter� was attached to
the Kevlar line and moved by the stepper motor. The per-
turber entered and exited the cavity by small holes �0.4 mm�
drilled in the upper and the bottom walls of the cavity. Both
holes were located at the position r=9.11 cm, �=0.47 radi-
ans.

Using the method of the “trial wave function” we were
able to reconstruct 75 experimental wave functions
�N,p�r ,��, which belonged to TM modes of the rough half
circular 3D billiard with the level number N between 2 and
489. The range of corresponding eigenfrequencies was from
�2	2.47 GHz to �489	11.99 GHz. The remaining wave
functions belonging to TM modes, from the range N
=2–489, were not reconstructed because of near-
degeneration of the neighboring eigenfrequencies or due to
the problems with the measurements of ��N,p�Rc ,���2 along a
half circle coinciding for its significant part with one of the
nodal lines of �N,p�r ,��.

In Figs. 2 and 3 we show two examples of reconstructed
wave functions �460,0�r ,�� and �463,4�r ,��, respectively. The
character of the wave functions predominantly depends on

FIG. 2. The reconstructed wave function �460,0�r ,�� of the cha-
otic half circular microwave rough billiard. The amplitudes have
been converted into a grey scale with white corresponding to large
positive and black corresponding to large negative values, respec-
tively. Dimensions of the billiard are given in cm. In the figure the
z dependence of the electric field distribution E460,0�r ,� ,z��x=0

��460,0�r ,���x=0f0�z� is also shown.

FIG. 3. The reconstructed wave function �463,4�r ,�� of the cha-
otic half circular microwave rough billiard. The z dependence of the
electric field distribution E463,4�r ,� ,z��x=0��463,4�r ,���x=0f4�z� is
also shown.
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the effective wave vector kN,p. It is seen that the wave func-
tion �463,4�r ,�� in Fig. 3 is more regular than the one pre-
sented in Fig. 2 in spite of having the larger level number N.

In order to check ergodicity of the billiard’s wave func-
tions �N,p�Rc ,��, especially close to the ergodicity borders,
one should use some additional measures such as, e.g., cal-
culation of the structures of their energy surfaces �14�. For
this reason we extracted wave-function amplitudes Cnl

�N,p�

= �n , l �N , p� in the basis n , l of a half circular billiard with
radius rmax, where n=1,2 ,3. . . enumerates the zeros of the
Bessel functions and l=1,2 ,3. . . is the angular quantum
number. As expected, close to the border of the regimes of
Breit-Wigner and Shnirelman ergodicity the wave function
�460,0�r ,�� �N�=65� was found to be extended homoge-
neously over the whole energy surface �13� �figure not
shown here�. In contrary, the wave function �463,4�r ,��, N�

=16, which lies closer to the localization border, displays the
tendency to localization in n , l basis �figure not shown here�.

The measurement of 3D electric field distributions EN,p�x�
allowed us to find the experimental spatial correlation func-
tion CN,p�x ,s�. It is easy to show �21� that for the 3D chaotic
cavity with the translational symmetry the spatial correlation
function should have the following form:

CN,p�x, �s�� � CN,p��s�� = J0�kN,psxy� cos�p�sz/h� , �5�

where �s � = �sxy
2 +sz

2�1/2. For the cross-sectional planes z
=const the correlation function CN,p��s � �
J0�kN,psxy� is re-
duced to the well-known result of Berry �21� for chaotic 2D
wave functions described by a random superposition of plane
waves.

In Figs. 4�a�–4�c� we show a representative example of
the experimental correlation function C460,0�x , �s � � �N�=65�

calculated at x= �−2.75, 4.35, 0� cm for the three different
projection angles �=0, � /4, and � /2, respectively, where
�=arcsin�sz / �s � �. The local average �¯� required for the
evaluation of CN,p�x , �s � � �see the formulas �3� and �4�� was
calculated on the cross-sectional plane xy in the range � /2
=2� /kN,p. The experimental correlation functions
C460,0�x , �s � � are compared in Fig. 4 with the theoretical
ones. In all cases we find good agreement with the theoreti-
cal predictions given by the formula �5�. Small discrepancies
observed in Fig. 4�a� for �s � �1 can be connected with the
finiteness of the system and were theoretically studied in
�22�.

Figures 5�a�–5�c� show the experimental correlation
function C463,4�x , �s � � �N�=16� calculated at x= �−2.75,
4.35,0� cm for the three different projection angles �=0,
� /4, and � /2, respectively. The experimental correlation
functions C463,4��s � � are compared in Fig. 5 with the theoret-
ical ones. In Fig. 5�a�, even for small �s�, we find a significant
departure of the experimental correlation function from the
theoretical prediction, which clearly suggests that the wave
function �463,4�r ,�� is not chaotic. Also in Figs. 5�b� and 5�c�
the experimental correlation functions C463,4��s � � show for
larger �s� significant deviations from the theoretical ones. The
discrepancies between the correlation function C463,4�x , �s �
=z� for the z component of the electric field distribution and
the theoretical prediction in Fig. 5�c� arise mainly due to the
procedure of averaging of the correlation function
CN,p�x , �s � � in the z direction, which was taken over the pe-
riod of the cosine function.

In summary, we measured the wave functions of the cha-
otic 3D rough microwave billiard with the translational sym-
metry up to the level number N=489. The experimental

FIG. 4. Panels �a�–�c� show the experimental correlation func-
tion C460,0�x , �s � � calculated at x= �−2.75,4.35,0� cm for the three
projection angles �=0, � /4, and � /2, respectively. Experimental
correlation function C460,0�x , �s � � �full line� is compared with the
theoretical one �dashed line�.

FIG. 5. Panels �a�–�c� show the experimental correlation func-
tion C463,4�x , �s � � calculated at x= �−2.75,4.35,0� cm for the three
projection angles �=0, � /4, and � /2, respectively. Experimental
correlation function C463,4�x , �s � � �full line� is compared with the
theoretical one �dashed line�.
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correlation function CN,p�x ,s� was estimated and compared
with the theoretical prediction. For the states with higher N�

we find, especially for small values of the parameter �s�, good
agreement with the theoretical predictions, which show that
the wave functions are chaotic. For the states with lower N�

significant discrepancies between experimental and theoreti-
cal results are observed.
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